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• Poor conductivity of current 
composite electrolytes (10-6 S/cm 
to 10-4 S/cm) 

• Low mechanical strength of 
composite electrolytes 

• Low stability during operation 

• Project Start Date: Oct. 1, 2016 
• Project End Date:   Sept. 30, 2019 
• Percent complete: 55% (till 03/31 

2018) 

 
 
 
 
 
 
 

 

• Interactions/collaborations: 
      North Carolina State University 
• Project lead: 
      West Virginia University 

Barriers 

Partners 

Timeline 

Overview 
 

• Total project funding 
– DOE share:$1,244,012 
– Contractor share: $156,181 

• Funding received in FY 2017: 
$479,720  

• Funding for FY 2018: $463,711 
 

Budget  

Overview 
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Overall objectives  
Develop the solid-state electrolytes by integrating a highly-conductive inorganic 
nanofibrous network in a conductive polymer matrix for both lithium metal and 
lithium-sulfur batteries.  

Objectives of this period (04/01/2017– 03/31/2018) 
-Synthesize the inorganic nanofiber-polymer composite electrolytes; 
-Characterize the microstructure of composite electrolytes, and study the nanofiber-
polymer interface; 
-Measure the temperature-dependent ionic conductivity of composite electrolytes and 
electrochemical stability window, mechanical property. 

Impact 
The DOE funding will allow the research team to developsolid-state inorganic 
nanofiber-polymer composite electrolytes that will not only provide higher ionic 
conductivity, improved mechanical strength and better stability than the PEO-based 
polymer electrolyte, but also exhibit better mechanical integrity, easier incorporation 
and better compatibility with the lithium metal anode than the planar ceramic 
membrane counterparts. The proposed inorganic nanofiber-polymer composite 
electrolytes will enable the practical use of high energy-density, high power-density 
lithium metal batteries and lithium-sulfur batteries.  

Relevance 



Milestones 
Milestone Type Description 

Synthesize inorganic nanofibers Technical Demonstrate inorganic nanofiber samples 

Inorganic nanofiber testing Technical Test the conductivity of inorganic nanofibers, achieving 
ion conductivity of >1.0 mS/cm 

Synthesize polymers  Technical Demonstrate polymer samples 
Polymer testing Technical Test the conductivity of polymers achieving  >0.2 mS/cm 
Develop the ion-conducting 
polymers and inorganic 
nanofibers  

Go/No Go 
Approach identified to optimize ion-conducting polymers 
and inorganic nanofibers. 

Milestone Type Description 
Synthesize composite 
electrolytes Technical Demonstrate nanofiber polymer composite samples 

Performance of composite 
electrolytes Technical 

Measure electrochemical performance of composite 
electrolytes achieving >0.8 mS/cm; decomposition 
voltage >4.5 vs. Li+/Li 

Properties of composite 
electrolytes Technical 

Measure the mechanical properties such as the 
Young’s modulus, the shear modulus and tensile and 
shear strengths 

Develop inorganic nanofiber-
polymer composite electrolytes Go/No Go 

Approach identified to optimize development of 
inorganic nanofiber-polymer composite electrolytes 

Milestones in Year 1: 

Milestones in Year 2: 



Approach 
 



Approach 
 
 Polymer matrix: 

• Compared with the complicate synthesis procedures reported before,  such as ring opening 
polymerization, our cross-linked acrylate-based PEO polymers are fabricated through easy UV cross-
linking process.  

• Compared with the crystalline PEO structure, ours has fully amorphous PEO structure. 
• Compared with previous double cross-linkers with high Tg (-20 °C), our polymer is plasticized with PEG,  

showing low glass transition temperature Tg (-56.5 °C). 
• Compared with the low ionic conductivity of the previous PEO based polymers(10-9-10 -6 S/cm), ours has 

higher ionic conductivity, for example the salt-added cross-linked polymer can reach an ionic conductivity 
of  2.4×10-4 S/cm. 

 
Inorganic nanofibers: 
• Hydrogen-treatment is performed to create oxygen vacancies in Li-conducting metal oxides, showing 

improved ionic conductivity  
• Li-conducting metal oxides are doped with anions (nitrogen) while cation doping is reported in previous 

studies. Nitrogen doping can create the stable oxygen vacancy in the metal oxides. 
 

Ceramic-polymer composite electrolyte: 
• Composite electrolytes are prepared with in-situ polymerization on the ceramic nanofiber network. 
• Grating agent is introduced at the ceramic/polymer interface in the composite.  
• The ceramic nanofibers are surface-modified with a high ionic conductivity buffer layer, which is located at 

the ceramic/polymer interface in the composite. 
 

Full-cell batteries: 
• All-solid-state Li-ion batteries are developed, which greatly improves the safety during operation. 
• Use of solid-state electrolyte suppresses the dendrite formation. 
• All-solid-state Li-ion batteries show excellent cycle-stability, including high capacity retention and high 

columbic efficiency  

Innovation 



Technical Accomplishments and Progress 
 
 

Previous Accomplishments in Year 1 (10/01/2017 ~ 03/31/2018): 

 synthesized three precursors and monomers for block co-polymers 
 prepared a block co-polymer 
 synthesized three different types of inorganic nanofibers. 



Technical Accomplishments and Progress 
 
 Polymer matrix: 

• Block copolymer  
• Cross-linked block copolymer  
• Salt-added Cross-linked polymer 

 
Inorganic nanofibers: 
• Aluminum-doped Li0.33La0.557TiO3 (LLATO) nanofibers 
• Nitrogen-doped Li0.33La0.557TiO3 (N-LLTO) nanofibers 
 
Ceramic-polymer composite electrolyte: 
• LLTO incorporated into the cross-linked polymer composite 
• Silane linker at the LLAZO/polymer interface in the composite  
• Lithium phosphate at the LLATO/polymer interface in the composite  

 
Coin-cell battery: 
• Cycling performance, Coulombic efficiency and charge/discharge curves  

 of the Li| CLP-P4-LLTO |LFP battery 
 

Work done in Year 2 (04/01/2017 ~ 03/31/2018): 



POLYMER  MATRIX 

Current Progress in 
 



Technical Accomplishments and Progress 

 
 

Polymer matrix development 1: Block copolymer  

• Single-ion conducting 
• Supper-delocalized polyanion PSTFSI 

 

Ionic conductivity: 
 2.99×10-5 S/cm 

Ionic conductivity: 
1.16×10-5 S/cm 

Lithium monomer synthesis procedure 

Polymerization procedure 
Random  

copolymer 

Tri-block 
Copolymer 



• Single-ion conducting channel 
• High mechanical strength 

- Lithium blocks have higher rigidity 

Ionic conductivity: 
• Considering adding plasticizer 

 

7.68×10-6 S/cm 

Synthesis procedure: 

Technical Accomplishments and Progress 

 
 

Polymer matrix development 2: Cross-linked block copolymer 



• High ionic conductivity polymer matrix 
- Naturally amorphous structure  
- Small molecular weight chains move freely (decrease in Tg) 

Technical Accomplishments and Progress 

 
 

Polymer matrix development 3: Salt-added Cross-linked polymer 

Synthesis procedure: 



Technical Accomplishments and Progress 

 
 

Polymer matrix development 3: Salt-added Cross-linked polymer 

Thermal properties and ionic conductivity:  

• No melting transition 
• Low glass transition 

temperature (-56.5 oC) 
• Adding PEG increases 

ionic conductivity 
-Decrease in Tg 

-Decrease in Ea 

(a) (b) 



• Peaks of vinyl group (C=C) and acrylate group (C=C-C=O) disappeared  after polymerization 
v = 988, 812, 1190, 1410 cm-1 (PGMEA) 
v = 817, 1175 cm-1 (PEGDMA) 

• Monomers are totally reacted and cross linked even with addition of plasticizer and nanofibers 
• Good thermal stability 
         - Thermal degradation temperature 400 °C 

Technical Accomplishments and Progress 

 
 

Polymer matrix development 3: Salt-added Cross-linked polymer 

Chemical Structure: 

(a) (b) 



INORGANIC  NANOFIBERS 

Current Progress in 
 



 
 

 
 
 
 
 
 

 
 

Technical Accomplishments and Progress 

 
 

Inorganic Nanofibers: Al-doped Li0.33La0.557TiO3(LLATO) 

Morphologies  and structure of 0.5 mol% Al doped LLATO nanofibers 

•  After calcinations at 900 °C in air, all of the diffraction peaks from 0.5-10 mol % Al 
doped LLTO proved single-phase perovskite Li0.33La0.557TiO3.  

• Ionic conductivity of Al-doped Li0.33La0.557TiO3(LLATO) is 1.1×10-3 S/cm. 



Technical Accomplishments and Progress 

 
 

Inorganic Nanofibers: Al-doped Li0.33La0.557TiO3(LLATO) 

XPS spectra of LLATO with different  Al contents: 

Al-doped 
Sample 
 

Al atomic 
concentration 

0.5% 4.3% 

1% 4.8% 
 

1.5 7.3% 
 

5% 11.2% 
 

10% 11.2% 
 



                                                  

 
 
 
 
 
 

Pure and Al-doped Li0.33La0.56TiO3.  
(a), (b) and (c) are side views of pure, most stable single-Al and double-Al doped 
Li0.33La0.56TiO3, respectively.  
(d) is the top view of La-deficient layer of (b). Blue and green color blocks in (d) are 
used to represent two different regions in Li atom transporting direction. 

Theory calculation of Al-doped Li0.33La0.56TiO3 structure:   
       

Constructing La-full and La-deficient 
layers along stuck direction in  the 
left figure, we studied the 
transporting behavior of Li ions in 
pure and Al-doped Li0.33La0.56TiO3. 
The left figure gives ideal 
transporting direction to simplify our 
research.  

Technical Accomplishments and Progress 

 
 

Inorganic Nanofibers: Al-doped Li0.33La0.557TiO3(LLATO) 



                                                  

 
 
 
 
 
 

Transporting barriers for Li ions along 
transporting direction in pure, single-Al 
and double-Al  doped Li0.33La0.56TiO3. The 
transporting trajectory is marked by dash 
line in inset. 

Transporting barrier for pure, single-Al 
and double-Al doped structure are 
0.365 eV, 0.165 eV and 0.225 eV, 
respectively. This trend is consistent 
with experiments. 

Technical Accomplishments and Progress 

 
 

Inorganic Nanofibers: Al-doped Li0.33La0.557TiO3(LLATO) 

Al content ( mol%) 0 0.5 1 1.5 5 10 

Ionic conductivity (10-4 S/cm) 1.10 3.98 3.62 1.96 1.08 0.81 

Theory calculation of Al-doped Li0.33La0.56TiO3 structure:   
       



 
 

 
 
 
 
 
 

 
 

Technical Accomplishments and Progress 

 
 

Inorganic Nanofibers: Nitrogen-doped Li0.33La0.557TiO3(N-LLTO) 

Morphologies, XRD patterns and XPS spectrum of N-doped LLTO nanofibers: 



Technical Accomplishments and Progress 

 
 

Inorganic Nanofibers: Nitrogen-doped Li0.33La0.557TiO3(N-LLTO) 

EIS plots of N-LLTO under different doping temperature:  

N-LLTO/PVDF-HFP  N content in N-LLTO 
Temperature ℃ 525 550 575 600 
N content    - 0.8% 0.9% 1.0% 

LLTO 
/PVDF-
HFP 

Pure  
LLTO 

N-525℃ N-550℃ N-575℃ N-600℃ 

Ionic 
conductivity 
(×10-4 S/cm) 

1.3 2.1 3.8 2.3 2.3 

97 μm  

N-LLTO 



Technical Accomplishments and Progress 

 
 

Inorganic Nanofibers: Nitrogen-doped Li0.33La0.557TiO3(N-LLTO) 

Theory calculation of N-doped  Li0.33La0.56TiO3 structure:   
       

Relative energy for pure and N-doped Li0.33La0.56TiO3 in 
transport direction od Li ions. Blue balls indicate N 
atoms. 

Doping nitrogen to Li0.33La0.56TiO3 
can reduce the transport barrier for 
Li ions. However, over-doping of N 
atoms could hamper Li atom 
transport. Single-N dopant in 
Li0.33La0.56TiO3 results in the lowest 
transport barrier  of 0.262 eV. This is 
consistent with experiments. 

Hypothesis: Nitrogen doping may: 
• Decrease the transporting barrier.  
• Generate of oxygen vacancies, 

e.g. ABO3 / ABO3-3x/2Nx 



Technical Accomplishments and Progress 

 
 

Inorganic Nanofibers: Nitrogen-doped Li0.33La0.557TiO3(N-LLTO) 

Theory calculation of N-doped  Li0.33La0.56TiO3: 

Eformation= Esingle N-dopant + EO-vacancy - 1/2EO2 
 
• Formation energy for O-vacancy is -3.167 eV, 

which indicates that O-vacancy formation was in 
favor thermodynamically  

• Li-ion transport barrier is 0.277 eV, lower than pure 
LLTO (0.365 eV). 

Most stable O-vacancy in single N-doped Li0.33La0.56TiO3 

Hypothesis: Nitrogen doping may: 
• Decrease the Li-ion transport barrier.  
• Generate of oxygen vacancies, e.g. ABO3/ABO3-3x/2Nx 



CERAMIC-POLYMER COMPOSITE 
ELECTROLYTE 

Current Progress in 
 



LLTO 

Technical Accomplishments and Progress 

 
 

Composite electrolytes developed  

:  
LLTO incorporated cross-linked polymer 
 

:  
Silane-LLAZO incorporated cross-linked 
polymer composite electrolyte                                             
 

:  
Lithium phosphate modified LLATO based composite 
electrolyte 

LLATO 

Li3PO4 

Si
O

O

CH2

CH3

O

O

O

LLA
ZO

 nanofiber



  LLTO amount Ionic conductivity  tLi+ 

  (wt %) at 25 °C (S cm-1)   

CLP 0 3.38×10-5 0.15 
CLP-P4 0 2.40×10-4 0.15 

CLP-P4-LLTO-1 10 2.48×10-4 0.26 
CLP-P4-LLTO-2 20 2.82×10-4 0.40 
CLP-P4-LLTO-3 30 3.31×10-4 0.51 

• Adding inorganic nanofibers leads to an 
increase in ionic conductivity 

• No agglomeration effect was observed 
(lithium transference number (t) increases 
with the addition of LLTO nanofibers) 

• Well-distribution of nanofibers 
• Naturally amorphous polymer matrix 

• Significantly enhance lithium transference 
number 

Technical Accomplishments and Progress 

 
 

Composite electrolyte 1: LLTO incorporated cross-linked polymer 

Ionic conductivity 
       



• Symmetric lithium cells: Li|SEs|Li 
      - Charge/discharge at constant current densities 
      - 0.2, 0.5 mA/cm2 for 15 min at room temperature 

• CLP-P4 symmetric cell short-circuits after 30 day 
       - Short-circuit  because of the mechanical failure 
       - without the presence of LLTO nanofibers 
• LLTO nanofibers provided a mechanically robust 

framework, and the resultant CLP-P4-LLTO-3 cell 
shows stable charge/discharge process after 30 days 

• Young's Modulus 
      - CLP:   0.21 MPa 
      - CLP-P4:  0.02 MPa 
      - CLP-P4-LLTO-3:  0.13 MPa 
• Tensile strength 
       - CLP:   0.18 MPa 
       - CLP-P4:  0.02 MPa  
       - CLP-P4-LLTO-3:  0.10 MPa 

Technical Accomplishments and Progress 

 
 

Composite electrolyte 1: LLTO incorporated cross-linked polymer 

Mechanical property and cycling stability:  
       



Synthesis process (Preliminary approach) 
• SiO2 coating 

– 3 wt% tetraethyl orthosilicate (TEOS ) in ethanol/H2O (95:5 volume ratio) 
for 30 min 

• Silane coating 
– 2.5 wt% 3-(Trimethoxysilyl)propyl methacrylate (Silane) in ethanol/H2O 

(95:5 volume ratio) for 12 h 

 

Si
O

O

CH2

CH3

O

O

O

LLA
ZO

 nanofiber

Technical Accomplishments and Progress 

 
 

Composite electrolyte 2: 

Silane-LLAZO incorporated cross-linked                                                                                              
polymer composite electrolyte                                             

• Reduce the interfacial resistance 
• High ionic conductivity, high lithium transference number 

 



• SiO2 and silane are successfully coated on the surface of LLAZO 
nanofibers 
– Si-O groups, C=C groups appear 

• The vinyl groups of silane coating layer is active and can be cross-linked 
by thermal initiators 
– C=C groups disappear after polymerization 

Technical Accomplishments and Progress 

 
 

Composite electrolyte 2: 

Chemical characterization:  
       

Silane-LLAZO incorporated cross-linked                                                                                              
polymer composite electrolyte                                             



Future plan: 
• Vary the silane coating thickness 

– 3h, 6h, 12h and 24h 
• Vary the composition of silane coated LLAZO and CLP monomers 

– 70 wt% LLAZO-silane + 30 wt% CLP 
– 80 wt% LLAZO-silane + 20 wt% CLP 
– 90 wt% LLAZO-silane + 10 wt% CLP 

Technical Accomplishments and Progress 

 
 

Composite electrolyte 2: 
Silane-LLAZO incorporated cross-linked                                                                                              
polymer composite electrolyte                                             

Electrochemical  testing:  
       • Ionic conductivity test methods 

– Solution casting membrane without 
pressing into pellets 

• Thicker coating layer reduces the overall 
impedance 
 

Preliminary results: 
• 70 wt% LLAZO-silane + 30 wt% CLP 

– Ionic conductivity 3.78×10-4 S/cm at 
room temperature 



• Much more stable than CLP polymer electrolyte and CLP composite 
electrolyte 
– 0 ~ 6 V for LLAZO-Si-Silane-70% CLP-30% composite electrolyte 
– 1 ~ 5 V for CLP, CLP-P4, and CLP-P4-LLTO-3 

 

Technical Accomplishments and Progress 

 
 

Composite electrolyte 2: 
Silane-LLAZO incorporated cross-linked                                                                                              
polymer composite electrolyte                                             

Electrochemical  testing:  
       



Technical Accomplishments and Progress 

 
 

Composite electrolyte 3： 

(a), (b) Photograph of flexible and 
bendable PVDF-HFP/LiTFSI/LLATO 
membrane  
 
(c) SEM image of the surface of 
PVDF-HFP/LiTFSI/LLATO 
membrane, 
  
(d) cross-sectional SEM image of 
PVDF-HFP/LiTFSI/LLATO 
membrane,  
 
(e) EIS profiles of the PVDF-
HFP/LiTFSI/LLTO(black),PVDF-
HFP/LiTFSI/LLATO(red),PVDF-
HFP/LiTFSI/LLATO-Li3PO4(blue) 
electrolyte membrane at different 
temperatures(inert is the zoom plots). 

The coating of the Li3PO4 layer 
improves the ionic conductivity 
 to 5.09 x10-4S/cm by 26.9% 
compared with PVDF-
HFP/LiTFSI/LLATO. 

Li3PO4 

Al doping percent( mol%) 0 0.5 1 1.5 5 10 0.5/Li3PO4 

Ionic conductivity 

(10-4 S/cm) 

1.10 3.98 3.62 1.96 1.08 0.81 5.09 

Lithium phosphate modified LLATO-polymer 
composite electrolyte 



(a) TEM image of LLATO nanofibers, (b) TEM (c) HRTEM image of Li3PO4 modified 
0.5% Al-LLATO nanofibers, (d) interface of PVDF-HFP/LiTFSI/LLATO composite (e) 
interface of PVDF-HFP/LiTFSI/LLATO/Li3PO4 composite .  

Technical Accomplishments and Progress 

 
 

Composite electrolyte 3: 
Lithium phosphate modified LLATO-polymer 
composite electrolyte 

Microstructure characterization:  
       



• Electrochemical window 
– 0~6 V for of PVDF-HFP/LiTFSI/LLATO/Li3PO4 composite electrolyte 

• Symmetric lithium cells: Li|SEs|Li 
– Charge/discharge at constant current densities 
– Small polarization voltages of ±23 mV were observed at 0.5 mA/cm2 for 30 min 

at room temperature 
 

 

 

Technical Accomplishments and Progress 

 
 

Composite electrolyte 3: 
Lithium phosphate modified LLATO-polymer 
composite electrolyte 

Electrochemical  testing:  
       



   COIN-CELL BATTERY 

Current Progress in 
 



Battery assembly: 
• Cathode: LiFePO4 (LFP) 
      - Cathode composition 

LFP: CLP-P4-LLTO : C = 6 : 3 : 1 
LFP loading: 2 mg/cm2 
 

• Anode: Lithium foil 
 

• Electrolyte: LLTO incorporated 
cross-linked polymer composite 
electrolyte CLP-P4-LLTO 

Technical Accomplishments and Progress 

 
 

Battery performance: Fabrication of coin cells  

 

To improve contact between electrolyte and cathode: 
– Precursor   
– Polymerization under UV light directly on cathode 
– Heat at 80 ˚C for 20 mins after assembling 



Technical Accomplishments and Progress 

 
 

Battery performance 
  

147 mAh/g 

115 mAh/g 

90 mAh/g 

(a) (b) 

(c) 
• Perfect harmony of plasticizer and nanofibers 
      - High Li+ conductivity 
       - Good mechanical properties 
• Excellent cycle-stability-  
      - High capacity retention of ~98%  
       - High columbic efficiency of 99% 

• Excellent rate capability 
       - 115 mAh/g at 0.5 C,  
        -  90 mAh/g at 1 C 

 
 

Electrochemical  testing:  
       



 
 

Collaboration and Coordination with Other Institutions 

U.S. Department of Energy  
-Sponsorship, steering 

North Carolina State University - Key partner 
Polymer matrix design, synthesis and characterization; 
linker development; and full cell construction and testing 

West Virginia University - Project lead  
Management and coordination; inorganic nanofiber design,  
synthesis and characterization; composite electrolyte 
development; and battery construction and testing 

Quzhou University 
Theory calculations on the cationic and anionic doping of 
perovskite materials 



 
 

Remaining Challenges and Barriers 

• It remains a significant challenge in improving the ionic conductivity of polymer 
matrix in the composite. 

• It is essential to explore the synergistic effect of polymer and ceramic nanofibers. 

• A grafting agent with high ionic conductivity is expected to promote the Li ion 
transport between the ceramic nanofibers and the polymer matrix. However, such 
an organic linker is rare. 

• The solid-state interface between the electrolyte and the electrode has significant 
effect on the performance of  full-cell batteries. The fabrication processes need to 
be explored to optimize the interface. 



 
 

Proposed Future Research 

Polymer matrix: 
• Optimize and develop new polymer structures with high ionic conductivity    
                        
Inorganic ceramic nanofibers: 
• Improve the ionic conductivity of nanofibers by doping 
• Coating the ceramic nanofiber surface by a high ionic conductivity layer   

 
Composite electrolytes: 
• Search for a grating agent with high ionic conductivity 
• Modify the ceramic nanofiber surface to create a buffer layer at the ceramic-

polymer interface 
 
Batteries: 
• Construct and test Li/composite electrolyte/Li symmetric cells 
• Construct and test Li/composite electrolyte/cathode full cells 
• Optimize the composition and structure of the full cells 



 
 

Summary 

For polymer matrix, reached the goal of 2×10-4 S/cm : 
• Three major polymer matrices have been successfully synthesized 
• The PEO cross-linked polymer exhibits high ionic conductivity of 2.40×10-4 

S/cm at room temperature 
 
 

 
     
      

For inorganic nanofibers, reached the goal of 1×10-3 S/cm : 
• 0.5% aluminum doped Li0.33La0.56Ti0.995Al0.005O3 (LLATO) nanofibers 

exhibits ionic conductivity of 1.08×10-3 S/cm. 
 

For Composite electrolyte: 
• The LLTO nanofiber/CLP-P4 composite electrolyte exhibits 

improved mechanical properties and enhanced lithium transference 
number as compare to the polymer alone.  

• New type of composite electrolyte was prepared with silane-coated 
LLAZO nanofibers and CLP. The composite electrolyte exhibits ionic 
conductivity of 3.78×10-4 S/cm and stable electrochemical window. 

• The composite electrolyte consisting of Li3PO4-modified LLATO 
nanofibers and PVDF-HFP exhibits ionic conductivity of 5.1×10-4 

S/cm, as well as stable and wide electrochemical window. 



 
 

Responses to Previous Year Reviewers’ Comments  

No previous comments 
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